Abstract

Phenazine-based redox-active centers are capable of averting chemical bond rearrangements by coupling during the reaction process, leading to enhanced stabilization of the material. When introduced into a high-performance polymer with excellent physicochemical properties, they can be endowed with electrochemical properties and related prospective applications while maintaining the capabilities of the materials. In this study, a facile C-N coupling method was chosen for the synthesis of serial poly(aryl ether sulfone) materials containing phenazine-based redox-active centers and to explore their electrochemical properties. As expected, the cyclic voltammetry curves of PAS-DPPZ-60, which basically overlap after thousands of cycles, indicate the stability of the electrochemical properties. As an electrochromic material, the transmittance change in PAS-DPPZ-60 exhibits only a slight attenuation after as long as 600 cycles. Meanwhile, as an organic battery cathode material, PAS-DPPZ has a theoretical specific capacity of 126 mAh g-1, and the capacity retention rate is 82.6% after 100 cycles at a 0.1 C current density. The perfect combination of advantageous features between phenazine and poly(aryl ether sulfone) is considered to be the reason for the favorable electrochemical performance of the material series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call