Abstract

The development of permanent magnet-based rare earth metals becomes a serious problem if the raw materials are difficult to find. The solution chosen is to utilize an oxide-based permanent magnet with little substitution of rare earth metals. In this study presented a permanent magnetic synthesis of barium hexaferrite-based oxides that were doped with La and Ce atoms. The synthesis of this material uses the wet mechanical milling technique to obtain the single phase permanent magnet system Ba1-x-yLaxCeyFe12O19 (x = 0, 0.02, 0.04 and y = 0. 0.05, 0.1). The precursor is weighed according to stoichiometric composition and is milled for 5 hours then compressed at a pressure of 7000 Psi. Sintering temperature for the formation of the barium hexaferrite phase at 1200oC for 2 hours. All samples after sintering were characterized using XRD and EDS. A single phase is obtained on all sample compositions with a hexagonal P63/mmc structure and is supported by elemental analysis data that each substituted sample contains elements La and Ce. Lattice parameters a, b, and c appear to decrease with increasing concentrations of La and Ce doping ions with a ratio of c/a in the range of 3.93-3.94.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call