Abstract
Intermetallics of Fe and Ni, which are known as permalloy, are under attention due to their excellent magnetic performance. Besides, mechanical properties of the materials can be improved by decreasing crystallite size of FeNi intermetallics or by reinforcing them with hard secondary phases such as Al2O3. In this study, FeNi–Al2O3 nanocomposite powders with three different compositions were successfully synthesized through mechanical alloying of Fe2O3, Ni, and Al powders mixture. Characterization of the samples was accomplished by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy and X-ray diffraction. Effects of various parameters such as chemical composition of received materials, milling time, and annealing on the phase evolution, morphology, and microhardness of samples were investigated. It was found that by the addition of Fe as diluent, the required milling time for formation of FeNi intermetallic increased. By increasing milling time, mean crystallite size of FeNi decreased and reach to about 28 nm for FeNi-30 wt% Al2O3 nanocomposite powder sample. TEM observations also showed that in situ-formed Al2O3 particles, with particle size of about 65 nm, were uniformly dispersed within FeNi matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.