Abstract

A partially biodegradable and thermosensitive hybrid hydrogel network (DAN series) based on dextran-allylisocyanate (Dex-AI) and poly(N-isopropylacrylamide) (PNIPAAm) was synthesized via UV photocrosslinking. These hybrid hydrogels were characterized in terms of their chemical structure, thermal, mechanical, morphological and temperature-induced swelling properties. The effect of the composition ratio of Dex-AI to PNIPAAm on such properties were examined. The differential scanning calorimetry data show that this Dex-AI/PNIPAAm hybrid network has an increased lower critical solution temperature (LCST) and glass transition temperature (Tg) with an increase in the Dex-AI content. The interior morphology of these hybrid hydrogels revealed a decreased porous microstructure with an increase in the Dex-AI content in the hybrid network. Furthermore, if the Dex-AI composition became too high, a distinctive network structure with two different microporous structures appeared. The mechanical properties of these hybrid hydrogels also increased with an increase in the Dex-AI content. The temperature dependence of the swelling ratio, the deswelling kinetics as well as the reswelling kinetics was also characterized by gravimetric method. When comparing with a normal PNIPAAm hydrogel, these Dex-AI/PNIPAAm hybrid networks, due to the presence of Dex-AI moiety, also show improved temperature-induced intelligent properties, such as the faster and controllable response dynamics, which may find promising applications in a wide variety of fields, such as biomedical and bioengineering fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.