Abstract

AbstractThroughout the present research, cellulose nanocrystals (CNCs) have been modified with 3‐aminopropyltriethoxysilane (APTES) and also they have been exploited as the support for palladium nanoparticles (Pd NPs) using palladium complex. Moreover, Fourier Transform Infrared Spectroscopy(FT‐IR), Powder X‐ray Diffraction(PXRD), Field Emission Scanning Electron Microscopy(FE‐SEM), Energy Dispersive X‐ray Spectroscopy(EDS), Transmission Electron Microscopy(TEM), Inductively Coupled Plasma Optical Emission Spectroscopy(ICP‐OES) and Thermal gravimetric Analysis(TGA) were employed to characterize the Pd@CNC‐APTES nanocatalyst. The catalytic activity of the nanocatalyst has been investigated in the reduction of p‐Nitrophenol(p‐NP) and the other nitroaromatic compounds to the corresponding amine. Furthermore, the catalyst could be recycled four times without the considerable loss of Pd content and with a high level of p‐NP conversion. Using experimental results, thermodynamic parameters were calculated by Arrhenius and Eyring equations. The findings revealed the significant catalytic activity of Pd@CNC‐APTES nanocatalyst for the reduction of p‐NP and its derivatives by sodium borohydride(NaBH4) at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.