Abstract

A mechanical alloying (MA) process to transform elemental powders into solid Pb0.5Sn0.5Te with thermoelectric functionality comparable to melt-alloyed material is described. The room-temperature doping level and mobility as well as temperature-dependent electrical conductivity, Seebeck coefficient, and thermal conductivity are reported. Estimated values of lattice thermal conductivity (0.7 W m−1 K−1) are lower than some reports of functional melt-alloyed PbSnTe-based material, providing evidence that MA can engender the combination of properties resulting in highly functional thermoelectric material. Though doping level and Sn composition have not been optimized, this material exhibits a ZT value >0.5 at 550 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call