Abstract

AbstractIn recent years, the use of ozonated oil (ozone enriched oil form) is being increasingly preferred for biomedical applications because of its antibacterial activity. Among most important reasons of this choice is the high molecular affinity of the ozone molecule and intracellular effects of the products of ozone and the unsaturated fatty‐acid chemical reactions in cellular signaling systems. The aim of the present study was to synthesize and optimize the ozonated oil nanoemulsion system that would be transferred into the living systems easily, suggesting a promising carrier system for various biomedical applications. By varying formulation parameters (surfactant‐to‐oil ratio, surfactant concentration, mixing rate, and surfactant type), nanoemulsions were investigated in terms of mean particle diameters, distributions, and stabilities. Nanoemulsions with high stability and small droplet diameters (212.7 nm) could be produced under optimized conditions with Tween 40 as the surfactant at a 750 rpm mixing rate using the emulsion inversion point (EIP) low‐energy method. Spherical and uniformly distributed nanoemulsions were observed by SEM, which also supports mean particle diameter measurements. Fourier‐transform infrared spectroscopy (FTIR) and 13C NMR (nuclear magnetic resonance) studies indicated an ozonide structure within the nanoemulsion system, which remained even after 30 days of storage. The antibacterial activity of ozonated oil emulsions against Staphylococcus aureus and Escherichia coli suggests promising applications in the biomedical field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call