Abstract

Narrow bandgap tungsten oxide (WO3−x) nanoparticles have been synthesized by single-step plasma discharge in deionized water between two vertically pointed tungsten electrodes. Bombardment of energetic electrons on the as-formed nanoparticles in the plasma zone creates defect states. Formation of electron-rich oxygen vacancies on the crystal planes and grain boundary defects have been investigated. The peak shift and broadening in the Raman and FTIR spectra indicate the formation of oxygen vacancies and sub-stoichiometric WO3 nanoparticles. EDX analysis provides the ratio of tungsten to oxygen to be around 1:2.4. Optical bandgap has been found to be 2.15 eV, which is less than the bulk value of 2.54 eV. Observation of higher amount of defect states from TEM and XPS provides the reason for the formation of narrow bandgap tungsten oxide nanoparticles. The photocatalytic efficiency of the plasma synthesize WO3−x nanoparticles is found to be higher than that of commercial bulk and nano WO3 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.