Abstract

Nickel–Chromium (Ni-Cr) foam is a highly versatile material, combining excellent high-temperature and corrosion resistance with lightweight and energy absorption properties, making it a popular choice for a wide range of applications. This study explores the development of Ni-Cr foam using Pulse electrodeposition techniques, specifically ultrasonic-assisted pulse electroplating of nickel (UAPEPN) and ultrasonic-assisted pulse electroplating of chromium (UAPEPCr). The study evaluates the surface morphology, coating thickness and minimum mass gain of Ni-Cr foam after each process. A dedicated test rig was designed to measure the pressure drop across the foam, revealing a pressure drop of 0.29 bar at an input pressure of 70 PSI and a flow rate of 17.53 LPM of oil. The porosity percentage and permeability of the foam were evaluated at each developmental stage, with values noted as 91% and 1.0032 × 10−8 m2, respectively, after the UAPEPCr stage. Uniaxial tensile and compression tests were conducted to measure the foam’s maximum strength and energy absorption per unit volume, yielding valuable insights into the material’s performance characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call