Abstract

AbstractAcyclic diene metathesis (ADMET) polymerization has been used to synthesize latent reactive processable elastomers constructed of carbosilane and polyether segments. Two types of latent modes have been introduced: “chain‐internal” and “chain‐end” sites through the use of labile silicon methoxy functionalities. These latent reactive groups are inert when exposed to metathesis conditions allowing formation of the linear copolymer; subsequently exposure to moisture triggers hydrolysis of the methoxy groups and formation of a chemically crosslinked thermoset. The thermoset's mechanical response can be potentially varied from plastic to elastic behavior, depending on the ratio of carbosilane and oligooxyethylene monomers employed. Different lengths of glycols and numbers of methylene groups between them in the polymer backbone have been investigated to explore structure/property relationship. Polymers composed of oligooxyethylenes with eight methylene groups in between them exhibited fully amorphous character, while the ones with up to 20 methylene groups between glycol units showed their semicrystalline nature. The concentration of “chain‐internal” and “chain‐end” crosslink sites enhances strength; modification to the run length and structure of the soft phase enhances elasticity. Resultant materials have been subjected to mechanical tests using Instron; generated stress/strain curves have shown plastic and elastic behavior. Depending on the composition obtained samples have shown moduli from 0.3 to 115 MPa, tensile strengths from 0.6 to 10 MPa and elongations from 20 to 700%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3992–4011, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.