Abstract

Growth Hormone Releasing Hormone (GHRH), 44 amino acids containing hypothalamic hormone, retains the biological activity by its first 29 amino acids. GHRH (NH2 1-29) peptide antagonists inhibit the growth of prostate, breast, ovarian, renal, gastric, pancreatic cancer in vitro and in vivo. Aptamers, single-strand RNA, or DNA oligonucleotides are capable of binding to target molecules with high affinity. Our aim in this study is to synthesize and select X-aptamers against both GHRH NH2 (1-29) and GHRH NH2 (1-44) and demonstrate synthesized aptamers' target binding activity as well as serum stability. Aptamers against GHRH NH2 (1-44) and NH2 (1-29) peptides were synthesized, and binding affinity (Kd) of 24 putative X-aptamers was determined by the dot-blot method, co-immunofluorescence staining and, SPR analysis. The serum stability of TKY.T1.08, TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers was 90-120 h, respectively. The dose-dependent binding of TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers on GHRHR in MIA PaCa-2 was approved by co-IF assay results. Moreover, SPR analysis indicated the Kd (4.75, 1.21, and 4.0 nM) levels of TKY2.T1.13, TKY.T2.08, TKY.T2.09 putative X-aptamers, respectively. Our results illustrate the synthesis of 24 putative X-aptamers against both GHRH NH2 (1-44) and NH2 (1-29) peptides and TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers have high serum stability, high target binding potential with low Kd levels.

Highlights

  • Cancer is a complex disease in which cells undergo malignant transformation via various genomic and proteomic alterations, leading to uncontrollable cellular growth and proliferation [1]

  • Our results illustrate the synthesis of 24 putative X-aptamers against both Growth Hormone Releasing Hormone (GHRH) NH2 (1– 44) and NH2 (1–29) peptides and TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers have high serum stability, high target binding potential with low Kd levels

  • E.coli HB101 cells expressing His-tagged and His-tagged GHRH protein determined by immunoblotting following plasmids transformed by heat-shock method (Fig 1a)

Read more

Summary

Introduction

Cancer is a complex disease in which cells undergo malignant transformation via various genomic and proteomic alterations, leading to uncontrollable cellular growth and proliferation [1]. GHRH peptide antagonists have been shown to trigger apoptotic cell death via inhibiting the GHRH signaling in the prostate, endometrial, colon, lung cancer in vitro and in vivo [6, 10]. In order to generate GHRH antagonists, we select aptamers due to their excessive specificity, high binding affinity, low toxicity, and non-immunogenic properties [11]. Growth Hormone Releasing Hormone (GHRH), 44 amino acids containing hypothalamic hormone, retains the biological activity by its first 29 amino acids. GHRH (NH2 1–29) peptide antagonists inhibit the growth of prostate, breast, ovarian, renal, gastric, pancreatic cancer in vitro and in vivo. Our aim in this study is to synthesize and select X-aptamers against both GHRH NH2 (1–29) and GHRH NH2 (1–44) and demonstrate synthesized aptamers’ target binding activity as well as serum stability

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.