Abstract

AbstractNovel poly(ester carbonate)s were synthesized by the ring‐opening polymerization of L‐lactide and functionalized carbonate monomer 9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one derived from pentaerythritol with diethyl zinc as an initiator. 1H NMR analysis revealed that the carbonate content in the copolymer was almost equal to that in the feed. DSC results indicated that Tg of the copolymer increased with increasing carbonate content in the copolymer. Moreover, the protecting benzylidene groups in the copolymer poly(L‐lactide‐co‐9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one) were removed by hydrogenation with palladium hydroxide on activated charcoal as a catalyst to give a functional copolymer, poly(L‐lactide‐co‐2,2‐dihydroxylmethyl‐propylene carbonate), containing pendant primary hydroxyl groups. Complete deprotection was confirmed by 1H NMR and FTIR spectroscopy. The in vitro degradation rate of the deprotected copolymers was faster than that of the protected copolymers in the presence of proteinase K. The cell morphology and viability on a copolymer film evaluated with ECV‐304 cells showed that poly(ester carbonate)s derived from pentaerythritol are good biocompatible materials suitable for biomedical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:1737 –1745, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call