Abstract

Equiatomic Ni–Ti alloy reinforced with 0, 2.5, 5, and 10 vol % SiC nanoparticles was synthesized through mechanical alloying and microwave sintering process. In this method, a mixture of Ti and Ni powders and SiC nanoparticles (0–10 vol%) were mechanically milled for 30 h, compressed under 1 GPa pressure, and then sintered at 900–1100 °C by microwave heating. Microstructural analysis of the synthesized samples was performed using X-ray diffraction and scanning/transmission electron microscopy, and their hardness was determined using a Vickers microhardness tester. Structural studies revealed the formation of a complex phase structure consisting of the austenite (B2–NiTi), the martensite (B19′-NiTi), and the nickel-rich (Ni3Ti) and titanium-rich (NiTi2) phases. HR-TEM investigations confirmed an increased Ni3Ti phase in the austenitic NiTi matrix nearby the martensitic NiTi phase. It was found that adding SiC nanoparticles to Ni–Ti increased the amount of hard Ni3Ti phase, promoted the stability of the martensite phase at room temperature, and retarded the matrix grain growth during the sintering process. Microhardness tests showed that when the content of SiC nanoparticles increased up to 5 vol %, the microhardness increased considerably to 9 GPa and then declined. The high microhardness of synthesized nanocomposites is due to the formation of Ni3Ti and NiTi martensitic phases and their nanocrystalline structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.