Abstract

Three new chemical compositions based on the CaO-MgO-SiO(2) system were designed first, and then three novel glass-ceramics (M1, M2, and M3) were prepared by sol-gel method. X-ray diffraction analysis confirmed that they were predominantly composed of akermanite, wollastonite, and dicalcium silicate crystalline phases. The coefficient of thermal expansion (CTE) of M2 was 10.79 x 10(-6) degrees C(-1), closest to that of Ti-6Al-4V alloy, and the Young's modulus of M2 was 29.73 GPa, similar to that of the cortical bone. The bioactivity in vitro of M2 was evaluated by investigating its bonelike hydroxyapatite (HA)-formation ability in simulated body fluid (SBF), and the biocompatibility in vitro was detected by osteoblast proliferation, differentiation, and adhesion assay. The results revealed that M2 possessed bonelike carbonated hydroxyapatite (CHA)-formation ability in SBF and could significantly stimulate cell proliferation and differentiation. Furthermore, osteoblasts adhered and spread well on M2, indicating good bioactivity and biocompatibility in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.