Abstract
Two novel macroporous silica-polymer-calixcrown hybrid supramolecular recognition materials, 25,27-bis(n-octyloxy)calix[4]arene-crown-6 (BnOCalix[4]C6)/SiO2-P and 25,27-bis(i-octyloxy)calix[4]arene-crown-6 (BiOCalix[4]C6)/SiO2-P were synthesized by in situ polymerization and impregnation techniques. The obtained materials were characterized by scanning electron microscope (SEM), particle size distribution, nitrogen adsorption–desorption isotherms, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, 29Si solid-state NMR, and powder X-ray diffraction (XRD). The adsorption of some typical fission and non-fission products Na(I), K(I), Rb(I), Cs(I), Sr(II), Ba(II), La(III), Y(III), Pd(II), Ru(III), Zr(IV), and Mo(VI) onto BnOCalix[4]C6/SiO2-P and BiOCalix[4]C6/SiO2-P in HNO3 solution was investigated. The bleeding of the materials in HNO3 solution was evaluated by analysis of total organic carbon (TOC). BnOCalix[4]C6/SiO2-P and BiOCalix[4]C6/SiO2-P exhibited excellent adsorption ability and high selectivity for Cs(I) over all the other tested metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.