Abstract

Novel hyperbranched polyimides/attapulgite (HBPI/AT) nanocomposites were successfully synthesized by in situ polymerization. HBPI derived from novel 2,4,6-tri[3-(4-aminophenoxy)phenyl]pyridine (TAPP) and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA). 4,4′-diphenylmethane diisocyanate (MDI) modified AT copolymerized with HBPI and the nanocomposites formed multilinked network. Chemical structure, morphology, thermal behavior, and mechanical properties of nanocomposites were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and tensile testing et.al. Results indicated that modified AT was homogeneously dispersed in matrix and resulted in an improvement of thermal stability, mechanical properties and water resistance of HBPI/AT nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.