Abstract

The current study describes the synthesis and characterization of dual environment-responsive semi-interpenetrating hydrogels of polyhydroxyethyl methacrylate (pHEMA) and methyl cellulose (MC). HEMA was polymerized using free radical polymerization technique. Different proportions of MC were incorporated within the pHEMA matrix to induce environment-sensitive property. The microstructures of the hydrogels were studied under bright field microscopy. The hydrogels were thoroughly characterized using XRD, FTIR, swelling, mechanical and electrical studies. The micrographs of the hydrogels suggested formation of biphasic system. At lower proportions of MC, the hydrogels were oil-in-water type of formulations. An increase in the MC content resulted in the formation of bicontinuous biphasic formulations. Mechanical analysis suggested viscoelastic solid nature of the hydrogels. An increase in the MC content resulted in the increase in the viscous component. The electrical studies suggested resistive dominant behavior of the hydrogels. Thermal studies suggested better moisture retention capacity of the MC containing hydrogels. The hydrogels were found to be biocompatible in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call