Abstract

Novel anion-exchange membranes (AEMs) were prepared via in situ assembly of N-dodecyl-imidazole and 1,4-dibromobutane to construct the bi-imidazolium functionalized cationic liquid monomer, butanediyl-1,4-bis(N-dodecylimidazole bromide) into the isopropanol dispersions of quaternized chitosan, and followed by anion exchange with OH−. The morphology and characteristic properties of the resultant membranes, such as ion exchange capacity (IEC), anionic conductivity, and chemical stability were investigated. The membrane containing 15% mass fraction of butanediyl-1, 4-bis(N-dodecylimidazole bromide) shows that the anionic conductivity at 80°C up to 41.9mScm−1 and keep better long-term stability for 300h in 1moldm−3 KOH methanol solution than in 1moldm−3 KOH aqueous solution. The introduction of hydrophobic alkyl side chain of the imidazole rings could drive the N+ ionic clusters to aggregate and promoting OH− mobility in AEMs. The results of this study suggest that the AEMs based on bi-imidazolium cations with long alkyl side chain have good perspectives for alkaline fuel cell application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.