Abstract

Two neutral diruthenium complexes and one anionic diruthenium complex, Ru2(dpf)4(NO), Ru2(dpf)4(NO)2, and [Ru2(dpf)4(NO)]-, where dpf is diphenylformamidinate anion, were synthesized and characterized as to their electrochemical and spectroscopic properties. Two of the compounds, Ru2(dpf)4(NO) and Ru2(dpf)4(NO)2, were also structurally characterized. Ru2(dpf)4(NO) undergoes reversible one-electron reductions under N2 at E1/2=0.06 and -1.24 V in CH2Cl2, 0.1 M TBABr. These processes are shifted to E1/2=0.18 and -0.78 V under CO due to the trans-coordination of a CO molecule which stabilizes the singly and doubly reduced forms of the metal-metal bonded complexes, thus leading to easier reductions. CO does not coordinate to Ru2(dpf)4(NO), but it does bind to the singly reduced species to generate [Ru2(dpf)4(NO)(CO)]- under a CO atmosphere in solution; characteristic NO and CO bands are seen for this compound at nuNO=1674 cm(-1) and nuCO=1954 cm(-1). Ru2(dpf)4(NO)2 displays a reversible one-electron reduction at E1/2=-1.24 V versus SCE and an irreversible reduction at Epc=-1.96 V in CH2Cl2, 0.1 M TBAP under N2. There are also two reversible one-electron oxidations at E1/2=0.24 and 1.15 V. Spectroelectrochemical monitoring of the Ru2(dpf)4(NO)2 oxidation processes in a thin-layer cell shows only a single NO vibration for each electrogenerated product and nuNO is located at 1726 (neutral), 1788 (singly oxidized), or 1834 (doubly oxidized) cm(-1). Finally, a labile CO complex, [Ru2(dpf)4(NO)(CO)]-, could be generated by passing CO into a solution of [Ru2(dpf)4(NO)]-. Formation of the mixed CO/NO adduct was confirmed by electrochemistry and infrared spectroscopy. Analysis of the NO and CO stretching vibration frequencies for [Ru2(dpf)4(NO)(CO)]- by in-situ FTIR spectroelectrochemistry and comparisons with data for Ru2(dpf)4(NO) and Ru2(dpf)4(CO) reveal the presence of a strong interaction between NO and CO across the Ru-Ru bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.