Abstract

Alone, it is expected, and also was experimentally proved, that calcium carbonate and reduced graphene oxide do have negligible specific capacitance due to the chemical composition of both materials. However, synthesis of CaCO3 on the form of very thin sporadic layer attaching rGO results in dramatic increase in the specific capacitance of the obtained composite due to formation of the electrochemical double layer at the interfacial area. Moreover, the specific capacitance could be further enhanced by nitrogen-doping of the rGO sheets. Typically, a novel N-rGO/CaCO3 composite has been successfully synthesized by heat reflux strategy with graphite powder, calcium acetate and urea as raw materials.The composite was characterized by X-Ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy (FESEM), coupled with rapid EDAX (energy dispersive analysis of X-Ray) and X-ray photoelectron spectroscopy. The utilized physiochemical characterizations indicated that the final prepared composite can be demonstrated as N-doped rGO decorated by very thin discrete layer from calcium carbonate. Supercapacitive performance of N-rGO/CaCO3 composite has been investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1M KOH solution. The results reveal that the N-rGO/CaCO3 composite delivers a large specific capacitance of as high as 214Fg−1 and 188Fg−1 at 5mVs−1and 1.0Ag−1, according to CV and galvanostatic charge-discharge tests, respectively; while the CaCO3, rGO, rGO/CaCO3, N-rGO based electrodes has a poor electrochemical performance at the same conditions. Moreover, the as-prepared composite exhibited excellent long cycle stability with about 88.7% specific capacitance retained after 10,000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.