Abstract

Abstract A simple and inexpensive spray pyrolysis technique was employed to deposit nickel oxide (NiO) thin films from hydrated nickel chloride salt solution onto amorphous glass substrate. The as-deposited films were transparent, uniform and well adherent to the glass substrate. The effect of the substrate temperature, the volume and the concentration of the sprayed solution on the structural, optical and electrical properties was studied using X-ray diffraction, optical transmittance, four point probe, scanning electron microscopy and atomic force microscopy. The structural analyses show that all the samples have a cubic structure. It was found that the increase in the volume of sprayed solution leads to an increment in the crystallite size of NiO and improves the homogeneity of the film. Optical measurements have shown that an increase in the thickness of the layer results in a decrease in the optical transmission, but it remains higher than 70% even if the thickness exceeds 600 nm. At the same time, the optical gap decreases from 3.7 to 3.55 eV when the thickness increases from 133 to 620 nm. Low values of the electrical resistivity (less than 10 Ω cm) were obtained for thin films with thicknesses less than about 240 nm, but for higher thicknesses the resistivity increases linearly to reach about 170 Ω cm for a thickness of 620 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call