Abstract

316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were utilized in order to evaluate the phase composition and the functional groups of PLA/nHA coatings. Morphology and thickness of the nanocomposites coating of samples were evaluated using scanning electron microscope (SEM). Cell viability asses and eventually corrosion resistance evaluated by MTT and potentiostat test, respectively. SEM result shows that the deposition rate is measured (in terms of coating thickness) as a function of immersion/soaking time. The results of XRD and FTIR tests confirmed the presence of phase of PLA/nHA nanocomposites in the coated samples. Moreover, the cellular behavior of coating was analyzed by the cell proliferation (MTT assay). Furthermore, the corrosion resistance of coated samples was increased with immersion or soaking time in the solution bath of PLA/nHA nanocomposites and was higer than the uncoated sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call