Abstract

Layered double hydroxides (LDHs, or hydrotalcites) with Mg(2+) and Al(3+) cations in the mixed metal hydroxide layer and paratungstate anions in the interlayer have been prepared. Different methods have been followed: anion exchange with Mg,Al LDHs originally containing nitrate or adipate, reconstruction of the LDH structure from a mildly calcined Mg(2)Al-CO(3) LDH, and coprecipitation. In all cases, the tungsten precursor salt was (NH(4))(10)H(2)W(12)O(42). The prepared solids have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, thermogravimetric (TG) and differential thermal (DTA) analyses, scanning electron microscopy (SEM) with EDX (energy-dispersive X-ray analysis), and nitrogen adsorption at -196 degrees C for surface area and surface texture. Most of the synthesis methods used, especially anion exchange starting from a Mg(2)Al-NO(3) precursor at low temperature and short reaction times, lead to formation of a hydrotalcite with a gallery height of 9.8 A; increasing the reaction temperature to 70-100 degrees C and maintaining short contact times leads to a solid with a gallery height of 7.8 A. Both phases have been identified as a result of the intercalation of W(7)O(24)(6)(-) species in different orientations in the interlayer space. If the time of synthesis or the temperature is increased, a more stable phase, with a gallery height of 5.2 A corresponding to a solid with intercalated W(7)O(24)(6)(-), is formed, probably with grafting of the interlayer anion on the brucite-like layers. All systems are microporous. Calcination at 300 degrees C leads to amorphous species, and crystallized MgWO(4) is observed at 700 degrees C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call