Abstract
The aim of this study was to synthesize a novel drug delivery system using organogels (ORGs) and characterize its physicochemical properties, in vitro and ex vivo permeation abilities, cytotoxicity and in vivo local anesthetic effects. The ORG formulations contained a mixture of oleic acid-lanolin (OA-LAN), poloxamer (PL407), and the commonly used local anesthetic lidocaine (LDC). The main focus was to evaluate the impact of LAN and PL407 concentrations on the ORG structural features and their biopharmaceutical performance. Results revealed that LDC, OA, and LAN incorporation separately shifted the systems transitions phase temperatures and modified the elastic/viscous moduli relationships (G′/G″ = ~15×). Additionally, the formulation with the highest concentrations of LAN and PL407 reduced the LDC flux from ~17 to 12 μg·cm−2·h−1 and the permeability coefficients from 1.2 to 0.62 cm·h−1 through ex vivo skin. In vivo pharmacological evaluation showed that the ORG-based drug delivery system presented low cytotoxicity, increased and prolonged the local anesthetic effects compared to commercial alternatives. The data from this study indicate that ORG represent a promising new approach to effectively enhance the topical administration of local anesthetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.