Abstract

Based on the bioactivity and biocompatibility of hydroxyapatite (HA) and the excellent mechanical performance of polyamide 66 (PA66), a composite of nanograde HA with PA66 was designed and fabricated to mimic the structure of biological bone which exhibits a composite of nanograde apatite crystals and natural polymer. The HA/PA66 composite combines the bioactivity of HA and the mechanical property of PA66. This study focused on the preparation method of HA/PA66 composite and the influence of HA crystals on the characterization of the composite. HA slurry was used directly to prepare HA/PA66 composite by a solution method, in which HA is able to form hydrogen bond, i.e. chemical bonding with PA66. The nano-HA needle-like crystals treated by hydrothermal method are better in the particle size distribution and the particle dispersion. The morphology, crystal structure and crystallinity as well as crystal size of these needle-like crystals are similar to bone apatite. The nano-HA needle-like crystals dispersed uniformly in PA66 matrix with reinforcement effect and can prevent the micro-crackle spreading into cleft and fracture during the deformation process. The mechanical testing shows that the nano-HA/PA66 composite has a good mechanical property, and may be a promising bone replacement material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.