Abstract

CuO nanocrystals were prepared by thermal decomposition of Cu-oxalate at 400 °C; then CuO/TiO2 core/shell nanocrystals were formed via the hydrolysis of titanium isopropoxide (TIP) on the surface of CuO nanocrystals. The characteristics of the synthesized nanocrystals were systematically studied using appropriate techniques, namely the morphology by using scanning electron microscopy (SEM), and the crystalline structure by x-ray powder diffraction (XRD) and Raman spectroscopy. The structure, shape and size of the CuO and CuO/TiO2 nanocrystals could be tuned by changing various technological parameters: (i) the reaction/growth time (from several minutes to several hours), (ii) reaction temperature (from room temperature to 90 °C) and (iii) the molar ratios of the precursors. The results showed that the reaction temperature and the molar ratio of the precursors play important roles in controlling the morphology and size of both CuO and CuO/TiO2 nanocrystals. With increasing reaction temperature, nano-CuO evolved from spherical shaped nanoparticles to microspheres. By shelling the large-bandgap TiO2 layers on CuO nanocrystals, the core/shell structure is formed and the narrow-bandgap nano-CuO core is expected to be resistant to photocorrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.