Abstract

Nanocrystalline vanadium oxide thin films were prepared using sol–gel dip-coating technique. The effect of heat treatment in different environment including air, N2, Ar, and O2 gas on the structural, optical, electrical, and electrochemical properties of nanocrystalline vanadium oxide thin films were investigated. The results indicated that the calculated average crystallite size was reduced by annealing in Ar environment. Scanning electron microscopy (SEM) images showed layered morphology on the surface of the film annealed in air atmosphere, whereas the film annealed under Ar and N2 ambient revealed granular and wrinkle morphology, respectively. This morphology altered to rather smooth surface by annealing in O2 environment. The optical bandgap of the films were found to be 1.75, 1.84, 2.08, and 2.10 eV annealed in air, O2, N2, and Ar environment, respectively. It was observed that the films annealed under Ar and N2 ambient had low resistivity (~ 0.2 Ω cm) and high carrier concentration, while the film annealed in nitrogen environment showed higher mobility of charge carrier. The electrochemical measurements showed that annealing under N2 ambient improved the intercalation of Li ions, leading a higher interfacial capacitance of 19.18 mF Cm−2, and decreased the charge transfer resistance due to surface defects created by heat treatment in nitrogen environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.