Abstract
Organic debris in the form of fish bone wastes account to several thousand tons annually. In recent years, researchers have turned attention towards the bioconversion of organic debris into materials with biomedical applications. Accordingly, the present study synthesized nano-Hydroxyapatite (n-HAP) from bones of discarded Sardinella longiceps by the alkaline hydrolysis method. The synthesized n-HAP was characterized by using the scanning electron microscope (SEM), X-ray diffraction (XRD), atomic force microscope (AFM), and Fourier transform infrared spectroscopy (FTIR). Crushed fish bone demonstrated an agglomerate of fine and rod-like crystals as observed in SEM, whereas n-HAP exhibited a structure of dense thick particles. FTIR spectral data confirmed the functional groups such as alkanes, esters, saturated aliphatic, and aromatic groups. XRD analysis exhibited strong diffraction peaks of HAP confirming its presence in synthesized n-HAP. AFM analysis affirmed that the synthesized particles had an average size of 19.65 nm. Cell viability was tested at different concentrations (10, 50, 100, 250 μg/mL) against human osteoblast bone cells (MG-63).The maximum cell viability (141.3 ± 3.1%) was observed at 100 μg/mL (24 h). Mineralization was evaluated using Alizarin red staining of osteoblast MG-63 cells treated with n-HAP at the concentration of 50 and 100 μg/mL (0.54 ± 0.03 and 0.99 ± 0.05%) which exhibited red color indicating good results. The size, morphology, functional groups, viability and mineralization of the synthesized n-HAP are favorable for its use in bone tissue engineering and other potential osteo and dental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.