Abstract

We report novel materials for calcium phosphate mineralization processes. These materials were synthesized via a three-step procedure starting from chitosan. In a first step, N-guanidinium-chitosan acetate was prepared via a direct guanylation reaction with cyanamide. This intermediate was then used as a cationic polymer substrate for attracting two functional anionic silica precursors, which subsequently allowed accessing new ionic hybrid materials via sol-gel chemistry. These N-guanidinium-chitosan acetate/silica hybrid materials, containing either sulfonate or carboxylate groups, were characterized using solid state 13C NMR, 29Si NMR and FT-IR spectroscopy. Finally, these two ionic hybrids were used as templates for in-vitro biomimetic calcium phosphate mineralization using simulated body fluid solution. We could show that the two ionic hybrids act as versatile templates for biomineralization, inducing the formation of hydroxyapatite, as proved from XRD, SEM, EDX, TEM and TGA. The current results suggest that the new ionic hybrids may be promising candidates for bone tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.