Abstract

ABSTRACTIn this study, a multiblock copolymer containing oligo(3-methyl-morpholine-2,5-dione) (oMMD) and oligo(3-sec-butyl-morpholine-2,5-dione) (oBMD) building blocks obtained by ring-opening polymerization (ROP) of the corresponding monomers, was synthesized in a polyaddition reaction using an aliphatic diisocyanate. The multiblock copolymer (pBMD-MMD) provided a molecular weight of 40,000 g·mol−1, determined by gel permeation chromatography (GPC). Incorporation of both oligodepsipeptide segments in multiblock copolymers was confirmed by 1H NMR and Matrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectroscopy (MALDI-TOF MS) analysis. pBMD-MMD showed two separated glass transition temperatures (61 °C and 74 °C) indicating a microphase separation. Furthermore, a broad glass transition was observed by DMTA, which can be attributed to strong physical interaction i.e. by H-bonds formed between amide, ester, and urethane groups of the investigated copolymers. The obtained multiblock copolymer is supposed to own the capability to exhibit strong physical interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.