Abstract

Zwitterionic, monodisperse-porous polymer beads were newly synthesized using a hydrophilic acrylic crosslinker (glycerol dimethacrylate, GDMA) or a hydrophobic one (ethylene dimethacrylate) including a zwitterionic functional monomer sulfopropyl-2-vinylpyridinium hydroxide (SVP) in a modified-staged shape template polymerization. The effects of monomer/seed latex ratio and diluent/seed latex ratio on the particle size, mean pore size, pore size distribution and specific surface area of the poly(1-(3-sulfopropyl)-2-vinylpyridinium hydroxide-co-glycerol dimethacrylate) poly(SVP-co-GDMA) and poly(1-(3-sulfopropyl)-2-vinylpyridinium hydroxide-co-ethylene glycerol dimethacrylate) poly(SVP-co-EDMA) microbeads were investigated. For both types of microbeads, the mean size decreased with decreasing monomer/seed latex ratio and decreasing diluent/seed latex ratio. Almost tenfold higher specific surface area was achieved using a hydrophobic crosslinking agent (EDMA) with respect to the hydrophilic one. Poly(SVP-co-GDMA) microbeads were satisfactorily used as a stationary phase in HILIC mode for the isocratic separation of polar organics with the plate heights up to 124 microns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.