Abstract

A molecularly imprinted polymer (MIP), with special molecule recognition properties of ciprofloxacin (CIP), was prepared by thermal polymerization in which ciprofloxacin acted as template molecule, α-methacrylic acid (MAA) acted as functional monomer and trimethylolpropane trimethylacrylate (TRIM) acted as crosslinker. The optimized ratio was determined to be n(CIP): n (MMA):n(TRIM)51:6:16 by investigation of the effects of different concentrations of functional monomer and the crosslinker on the MIP’s recognition properties. Equilibrium binding experiment was used to investigate the adsorption dynamics, the binding ability to template molecule and the substrate selectivity. Scatchard analysis was used to study the MIP’s binding characteristic to template molecule. The results indicated that MIP has higher adsorption ability and selectivity. The equilibrium distribution coefficient KD was 41.64 and the separation factor α was 1.62. Scatchard analysis showed that two different kinds of binding sites were produced in the polymer matrix and their dissociation constants were calculated to be Kd1 = 5.249 × 10−5 mol·L−1, Kd2 = 2.237 × 10−3 mol·L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.