Abstract

Novel visible-light-active Mn–C–TiO2nanoparticles were synthesized by modified sol-gel method based on the self-assembly technique using polyoxyethylenes orbitan monooleate (Tween 80) as template and carbon precursor and manganese acetate as manganese precursor. The samples were characterized by XRD, FTIR, UV-vis diffuse reflectance, XPS, and laser particle size analysis. The XRD results showed that Mn–C–TiO2sample exhibited anatase phase and no other crystal phase was identified. High specific surface area, small crystallite size, and small particle size distribution could be obtained by manganese and carbon codoped and Mn–C–TiO2exhibited greater red shift in absorption edge of samples in visible region than that of C–TiO2and pure TiO2. The photocatalytic activity of synthesized catalyst was evaluated by photocatalytic oxidation of methyl orange (MO) solution under the sunlight irradiation. The results showed that Mn–C–TiO2nanoparticles have higher activity than other samples under sunlight, which could be attributed to the high specific surface area, smaller particle size, and lower band gap energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.