Abstract

Inorganic-organic hybrid perovskite (ABX3, A = organic cation, B = metal ion, X = halogen anion) combines the advantages of inorganic and organic materials. However, the properties and performance of mixed-halide CH3NH3PbBr2.5Cl0.5 (MAPbBr2.5Cl0.5) are still poorly understood. In this study, we synthetized MAPbBr2.5Cl0.5 single crystal and studied its structure, optical, thermal stability properties and optoelectronics applications for photodetector device. Compared with those of MAPbCl3, the interplanar distance of (100) crystal plane for MAPbBr2.5Cl0.5 becomes larger and the absorption spectrum of MAPbBr2.5Cl0.5 is extended to the visible region. The band gap of the MAPbBr2.5Cl0.5 single crystal is 2.28 eV. We find the device based on MAPbBr2.5Cl0.5 has high selectivity from 369 to 564 nm. The maximum ▴J (Jon– Joff) under 3.0 V bias voltage is about 1.2 µAcmr-2 at 454 nm visible light with 1 W mr-2 light intensity (1/1000 of the standard sunlight intensity), which proves the device has a high sensitivity. The linear relationship is established between the value of ▴J and light intensity and bias voltage. The fast current intensity transients (Fit) shows that the disappearance period of photocurrent density is 0.3 ms, which indicates the device is rapidly responsive photodetector. The highest value (1.7%) of external quantum efficiency (EQE) and the highest value of detectivities (D) both appear at 480 nm visible light at 4.0 V bias voltage when the irradiation power is 30 W m-2. Therefore, this simple and low-cost photoresponsive device is promising for industrial production of photodetector and photocatalysts device in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.