Abstract

Zinc ferrite and strontium hexaferrite; SrFe12O19/ZnFe2O4 (SrFe11.6Zn0.4O19) nanoparticles having super paramagnetic nature were synthesized by simultaneous co-precipitation of iron, zinc and strontium chloride salts using 5 M sodium hydroxide solution. The resulting precursors were heat treated (HT) at 850, 950 and 1150°C for 4 h in nitrogen atmosphere. The hysteresis loops showed an increase in saturation magnetization from 1.040 to 58.938 emu/g with increasing HT temperatures. The ‘as-synthesized’ particles have size in the range of 20–25 nm with spherical and needle shapes. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate shape with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties were estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite reaches −26.51 dB (more than 99% power attenuation) at 10.636 GHz which suits its application in RADAR absorbing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.