Abstract

Microcapsules containing healing agents have been used to develop the self-healing polymeric composites. These microcapsules must possess special properties such as appropriate strength and stability in surrounding medium. A new series of microcapsules containing dicyclopentadiene (DCPD) with melamine–formaldehyde (MF) resin as shell material were synthesized by in situ polymerization technology. These microcapsules may satisfy the requirements for self-healing polymeric composites. The chemical structure of microcapsule was identified by using Fourier transform infrared (FTIR) spectrometer. The morphology of microcapsule was observed by using optical microscope (OM) and scanning electron microscope. Size distribution and mean diameter of microcapsules were determined with OM. The thermal properties of microcapsules were investigated by using thermogravimetric analysis and differential scanning calorimetry. Additionally, the self-healing efficiency was evaluated. The results indicate that the poly(melamine–formaldehyde) (PMF) microcapsules containing DCPD have been synthesized successfully, and their mean diameters fall in the range of 65.2∼202.0 μm when the adjusting agitation rate varies from 150 to 500 rpm. Increasing the surfactant concentration can decrease the diameters of microcapsules. The prepared microcapsules are thermally stable up to 69 °C. The PMF microcapsules containing DCPD can be applied to polymeric composites to fabricate the self-healing composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call