Abstract

ABSTRACTBa3-xKxHx(PO4)2 is a candidate solid-state proton conductor for solid acid fuel cells that is water-insoluble. The measured conductivity of ∼ 2.4 10-5 S cm-1 for the composition x=0.80 at 250°C is not competitive for solid acid fuel cell applications. This work investigates a methods for synthesizing solid acid electrolytes with the strategy of increasing proton conductivity by cation substitution and decreasing particle size. We report on the synthesis of nano Ba3-xKxHx(PO4)2 to a novel Ba3-xNaxHx(PO4)2. X-ray diffraction was used to confirm the Ba3(PO4)2 crystal structure and measure lattice strain as a function of cation substitution. SEM confirmed the morphology of micro Ba3-xNaxHx(PO4)2 is substantially different from micro Ba3-xKxHx(PO4)2, suggesting that Ba3-xNaxHx(PO4)2 has a different growth kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.