Abstract

The purpose of this study is to develop novel colon-specific drug delivery systems with pH-sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs with different content levels of 5-amino salicylic acid (5-ASA) were synthesized by free radical copolymerization of metacrylic acid (MAA), polyethylene glycol monomethacrylate (PEGMA), and a methacrylic derivative of 5-ASA (methacryloyloxyethyl 5-amino salicylate [MOES]). The copolymers were characterized, and the drug content of the copolymers was determined. The effect of copolymer composition on the swelling behavior and hydrolytic degradation was studied in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.2). The swelling and hydrolytic behavior of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in SGF or an increase in gel swelling in SIF. Drug release studies showed that increasing content of MAA in the copolymer enhances the hydrolysis in SIF but has no effect in SGF. The results suggest that hydrogen-bonded complexes are formed between MAA and PEG pendant groups and that these pH-sensitive systems could be useful for preparation of a controlled-release formulation of 5-ASA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.