Abstract

Metal selenide has attracted much attention for use in rechargeable batteries due to its excellent conductivity and considerable capacity. However, it is still necessary to achieve a long cycle life and excellent Na+ storage performance to enable its practical application. Volume expansion and poor stability of selenide during operation also hinder its industrial applications. As metal-organic frameworks and aerogels possess porous structures, carbon materials derived from them can effectively reduce the volume expansion of selenide, resulting in improving cycling stability and enhancing Na+ storage. In this work, CoSe/C@C composites with a hierarchical structure were successfully prepared by freeze-drying and in situ selenization as anode materials. The CoSe/C@C composites exhibited superior cycling stability (a capacity of 332.3 mA h g-1) and capacity retention (63.1% compared to the second cycle) at 200 mA g-1, after 500 cycles. CoSe/C@C also exhibited a high rate performance of 403.4 mA h g-1 at 2 A g-1. Moreover, thanks to the high capacitance contribution and some redox reactions during cycling, the CoSe/C@C electrode possesses outstanding rate capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.