Abstract

Spinel ferrites can be used in magnetic targeting and microwave heating and can therefore be used for targeted and controllable drug delivery. We used the cetyltrimethylammonium bromide-assisted solvothermal method to synthesize a series of spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with a mesoporous or hollow-mesoporous structure suitable for direct drug loading and the particle diameters ranging from 200 to 350 nm. We investigated the effects of M2+ cation on the morphology and properties of these products by analyzing their transmission electron microscopy images, mesoporous properties, magnetic properties, and microwave responses. We chose hollow-mesoporous MxFe3-xO4 (M=Fe, Co, Zn) nanoparticles, which had better overall properties, for the drug VP16 (etoposide) loading and microwave-controlled release. The CoxFe3-xO4 and Fe3O4 particles trapped 61.5 and 64.8%, respectively, of the VP16, which were higher than that (60.4%) of ZnxFe3-xO4. Controllable drug release by these simple magnetic nanocarriers can be achieved by microwave irradiation, and VP16-loaded CoxFe3-xO4 released the most VP16 molecules (more than 50% after 1 h and 69.1% after 6 h) under microwave irradiation. Our results confirm the favorable drug loading and microwave-controlled delivery by these ferrites, and lay a theoretical foundation to promote clinical application of the targeted controllable drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.