Abstract

Maltol capped silver nanoparticles (McAgNPs) were synthesized using maltol (3-hydroxy-2-methyl-4-pyrone) as reducing and capping agent. McAgNPs were characterized by Visible and FTIR (Fourier transform infrared) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM). Bright yellow color McAgNPs showed surface plasmon resonance (SPR) band at 436nm, spherical shape and the average size between 35 to 50nm. McAgNPs revealed higher stability against varying storage time, temperature, pH and salt concentrations. McAgNPs were successfully utilized for the selective and highly sensitive colorimetric detection of cysteine (Cys). Addition of Cys in a solution of McAgNPs, resulted a rapid change in color from yellow to orange because of the formation of nanoaggregates as confirmed by Visible/FTIR spectroscopy, DLS, and AFM studies. The estimated limit of detection (0.043μM) was found to be more sensitive than previously reported other optical methods. The practical applicability of probe was also established by spiking the known concentrations of Cys in biological (blood plasma and urine) and environmental (tap and lake water) samples with significant recovery rates (92-104.6%). Despite being nontoxic to various tested cell lines, McAgNPs demonstrated potent antimicrobial, antibiofilm, and biofilm eradicating activities, thus potentially valuable in diagnostics and/or the synthesis of other nanocomposite material for broader applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call