Abstract

Graft polymerization onto the cellulose is one way to produce semisynthetic copolymers and semiconductors were hardly used as initiators. Maleylated cellulose (MC) with different degree of carboxyl groups was synthesized and degree of carboxyl groups was determined using titration method. Then the graft copolymers of acrylamide (AM) on MC were synthesized by titanium dioxide semiconductor photoinitiator in aqueous suspension under sunlight. The effect of different parameters, such as the degree of carboxyl groups, degassing of atmosphere, reactor type, light source, MC/AM ratio, and initiator concentration, was evaluated in the synthesis of graft copolymers. MC with a high degree of carboxyl groups about 2.8 mmol g−1 was selected for graft photopolymerization. Maximum monomer conversion (55%) for Maleylated cellulose-g-polyacrylamide (MC-g-PAM) was achieved with 0.5 mg TiO2, MC/AM = 0.056, argon atmosphere, sunlight source, and double quartz tube reactor. The maximum amount of equilibrium swelling (41 g g−1) was achieved for MC-g-PAM with 34% monomer conversion. The resulting graft copolymers were characterized by FT-IR, SEM, and TGA. Synthesis of MC-g-PAM using TiO2 nanoparticles (NPs) as the initiator was done successfully that shows the TiO2 NPs are useable in graft polymerization of acrylamide monomers onto the MC under sunlight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.