Abstract

Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol–gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol–gel process via covalent bonding between the organic–inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and γ-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials.

Highlights

  • Nanostructure hybrid organic–inorganic composites have attracted considerable attention recently, both from the perspectives of fundamental research and their technological applications [1,2,3]

  • The precursors of metal oxides were formed from tetrabutyl titanate (TBT) and barium carbonate, which were mixed with poly(amic acid) solution followed by thermal imidization

  • The organic–inorganic transparent hybrid nanocomposite materials were characterized by FTIR, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), optical images, scanning electron microscope (SEM), and transmission electron microscope (TEM) analyses

Read more

Summary

Introduction

Nanostructure hybrid organic–inorganic composites have attracted considerable attention recently, both from the perspectives of fundamental research and their technological applications [1,2,3]. The polymer nanocomposites were prepared using poly(amic acid) solution by the condensation of 3,3′,4,4′-benzonphenone tetra carboxylic dianhydride and 4,4′-oxydianhydride 4,4′-oxydianiline (ODA) added TET followed by thermal imidization from PI/ TiO2 hybrid nanocomposites They reported that nanosized inorganic TiO2 network dispersed in PI films at an average diameter of 1.5 nm at TiO2 content of 12 wt.% [22,23,24]. Silica-titania hybrid organic–inorganic materials have been studied as a promising system for photonic applications [41,42,43], and low loss wave guide based on the organically modified alkoxides has been fabricated by the sol–gel process. The organic–inorganic transparent hybrid nanocomposite materials were characterized by FTIR, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), optical images, scanning electron microscope (SEM), and TEM analyses

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.