Abstract
ABSTRACTIn-situ precipitation method is widely used and reported in the literature for the synthesis of iron oxide nanoparticles based on their applications in many fields. However, the rate of reaction and rate constant for the production of Magnetite Phase of iron oxide did not study in depth. Reaction rates are required to design a scale-up of the process. In this study, Magnetite phase of iron oxide nanoparticles (Fe3O4) are synthesized by the in-situ precipitation method, and the overall reaction rate is evaluated based on the concentration of Magnetite produced during the process. Further, X-ray diffraction, energy-dispersive X-ray spectroscopy and Raman spectroscopy are used to confirm the presence of a higher proportion of magnetite (Fe3O4) in the final product, which is responsible for more top magnetic properties 74.615 emu. Changes in morphology of these nanoparticles at different intervals of the reaction are reported by transmission electron microscope. The results showed that spherical nanoparticles synthesized at different intervals of the reaction have a very narrow range of particle size, i.e. 9–15 nm. Detailed analysis reveals the presence of a higher share of maghemite (Fe2O3) at the start of the reaction. However, maghemite eventually is converted to magnetite by the end of the reaction, thereby enhancing the magnetic strength of the nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.