Abstract
AbstractThe synthesis of magnetically-active nickel-yttrium oxide (Ni-Y2O3) nanocomposite particles is described in this work. The investigated material is produced with a modified ultrasound spray pyrolysis (USP) device which differs from a common USP setup in terms of use of three independently heating zones. They provide a direct feed of H2 to the second reaction zone and allow controlling the formation of the nanocomposite particles and facilitating their post-reaction stabilization with polyvinylpyrrolidone (PVP). According to the morphological and structural studies, the Ni-Y2O3 material takes a form of nanoparticles whose sizes are not homogeneously distributed as well as shapes are not smooth due to the successful formation of composite material with two interpenetrating phases. Moreover, the organic layer is detected on the surface of the nanoparticles which confirms the presence of PVP stabilizer. The magnetic investigations confirm that the Ni-Y2O3 nanocomposite reveals a spin glass-like behavior in which a collective freezing of magnetic moments might occur due to the interparticle interactions between Ni nanocrystallites presented in the sample.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.