Abstract

A novel macromolecular surface modifier, polypropylene-grafted-poly(ethylene glycol) copolymer (PP-g-PEG), was synthesized by coupling polypropylene containing maleic anhydride with monohydroxyl-terminated poly(ethylene glycol). The effects of the reaction condition on the graft reactions were studied. The copolymers were characterized by IR, 1H NMR, thermogravimetry (TG) and differential scanning calorimetry (DSC). The results indicated that the graft reactions were hindered by increasing the molecular weight of PP or PEG. The graft copolymer was found to have a higher initial thermal degradation temperature and lower crystallization capacity as compared with pure PP, and the side chain of PEG hindered the PP chain from forming a perfect β crystal. The thermal stability of PP-g-PEG decreased with the increasing content or molecular weight of PEG. The copolymers were blended with polypropylene to modify the surface hydrophilicity of the products. The results of attenuated total reflectance FTIR spectroscopy (ATR-FTIR) showed that PP-g-PEG could diffuse preferably onto the surface of the blends and be suitable as an effectual macromolecular surface modifier for PP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call