Abstract

Hydrothermal carbonization of cellulose was used to synthesize a mineral-free lignite-like solid fuel. By varying the reaction time the elemental composition was tuned to fit the composition of real lignite. Minerals were removed from real lignite by HCl and HNO3 leaching leading to altered oxidation temperatures. After 24h of hydrothermal treatment a synthetic lignite was obtained exhibiting two peaks in the differential mass loss curve during oxidative thermogravimetric analysis. This oxidation profile was similar to the oxidation profile determined for chemically leached lignite. Attenuated total reflectance infrared and nuclear magnetic resonance spectroscopy revealed comparable chemical structures for both synthetic and real lignite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.