Abstract
Polycrystalline strontium-doped lanthanum manganite (LSM) powders with 0.15, 0.22, and 0.30 mol % Sr were synthesized by the polymeric precursor route using a molar ratio of 3:1 citric acid and metal cations. The powders were characterized by Fourier transform infrared spectroscopy, thermal analysis, high-temperature X-ray diffraction to determine the crystalline perovskite phase and crystallite sizes, scanning electron microscopy for the morphological analysis, nitrogen adsorption to determine the specific surface area, and laser scattering to evaluate the particle size distribution. The LSM perovskite-type oxides containing intermediate 0.22 mol % Sr were found to exhibit a tendency to decrease in crystallite size and increase in specific surface area and, when calcined at 700-900 oC exhibited a pure phase of perovskite, had a crystallite size of about 17-20 nm and a specific surface area for 900 oC of 34.3 m2.g-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.