Abstract

New nanobiocomposites that combine nanoparticles and biomolecules have been shown very relevant for medical applications. Recently, cancer diagnostics and treatment have benefited from the development of nanobiocomposites, in which metallic or magnetic nanoparticles are conjugated with specific biomolecules for selective cell uptake. Despite recent advances in this area, the biomedical applications of these materials are still limited by the low efficiency of functionalization, low stability, among other factors. In this study, we report the synthesis of jacalin-conjugated gold nanoparticles, a nanoconjugate with potential application in medical areas, especially for cancer diagnosis. Jacalin is a lectin protein and it was employed due to its ability to recognize the Galβ1-3GalNAc disaccharide, which is highly expressed in tumor cells. Gold nanoparticles (AuNPs) were synthesized in the presence of generation 4 polyamidoamine dendrimer (PAMAM G4) and conjugated with fluorescein isothiocyanate (FITC)-labeled jacalin. The AuNPs/jacalin nanoconjugates were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrational spectroscopy (FTIR). We also performed an investigation using isothermal titration calorimetry (ITC) and fluorescence quenching measurements to understand the interactions occurring between the AuNPs and jacalin, which revealed that the nanoconjugate formation is driven by an entropic process with good affinity. Furthermore, in vitro tests revealed that the AuNPs/jacalin-FITC nanoconjugates exhibited higher affinity for leukemic K562 cells than for healthy mononuclear blood cells, which could be useful for biomedical applications, including cancer cells imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.