Abstract

Iron oxide nanoparticles show great promise in bio-applications like drug delivery, magnetic resonance imaging, and hyperthermia. This is because the size of these magnetic nanoparticles is comparable to biomolecules and the particles can be removed via normal iron metabolic pathways. These nanoparticles are also attractive for industrial separations and catalysis because they can be magnetically recovered. However, the size, morphology, and surface coating of the iron oxide nanoparticles greatly affect their magnetic properties and biocompatibility. Therefore, nanoparticles with tunable characteristics are desirable. This chapter elaborates the synthesis techniques for the formation of iron oxide nanoparticles with good control over reproducibility, surface and magnetic properties, and morphology. The well-known co-precipitation and thermal decomposition methods are detailed in this chapter. The surface modification routes and characterization of these nanoparticles are also discussed. The chapter will be particularly useful for engineering/science graduate students and/or faculty interested in synthesizing iron oxide nanoparticles for specific research applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.